QI 04, Seminar 3

Oracles

The Classical Parity Problem.
Quantum Oracles.

The Quantum Parity Problem.
Gate Set Limitations.

Universality.

E. “Manny” Knill: knill@boulder.nist.gov

—|—|TOC

mailto:knill@boulder.nist.gov

Classical Oracles

e A classical oracle O is a device that takes an input z and
outputs an answer O(x).

-

1
(—|BOt|—>|—»|TOC

Classical Oracles

e A classical oracle O is a device that takes an input z and
outputs an answer O(x).

L =
Examples:

- O1(z) = 1if z is a true statement about numbers,
O1(x) = 0 otherwise.

1
—|Top|Bot|—|—|TOC

Classical Oracles

e A classical oracle O is a device that takes an input z and
outputs an answer O(x).

-

Examples:
= (’)1() = 1if z is a true statement about numbers,
O1(x) = 0 otherwise.
- O5(x) = 1if z is a satisfiable boolean formula,
Oz(x) = 0 otherwise.

1
<—|T0p|BOt|—>|H>|TOC

Classical Oracles

e A classical oracle O is a device that takes an input z and
outputs an answer O(x).

L =
Examples:

- O1(z) = 1if z is a true statement about numbers,
O1(x) = 0 otherwise.

- O5(x) = 1if z is a satisfiable boolean formula,
Oz(x) = 0 otherwise.
... Oracles can be used to add computational power.

1
<—|T0p|BOt|—>|H>|TOC

Classical Oracles

e A classical oracle O is a device that takes an input z and
outputs an answer O(x).

L =
Examples:

- O1(z) = 1if z is a true statement about numbers,
O1(x) = 0 otherwise.

- O5(x) = 1if z is a satisfiable boolean formula,
Oz(x) = 0 otherwise.
... Oracles can be used to add computational power.

- O3(x) computes an unknown parity of .
Determine the parity.

< A C 1
<—|T0p|BOt|—>|H>|TOC

Classical Oracles

e A classical oracle O is a device that takes an input z and
outputs an answer O(x).

L =
Examples:

- O1(z) = 1if z is a true statement about numbers,
O1(x) = 0 otherwise.

- O(x) = 1if z is a satisfiable boolean formula,
Oy(x) = 0 otherwise.
... Oracles can be used to add computational power.

- O3(x) computes an unknown parity of .
Determine the parity.
... Oracles can act as black boxes to be analyzed.

Drac 1
«—|Top|—|—|TOC

Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

2
<—|BOt|—>|H>|TOC

Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s Is the number of 1’s in s modulo 2.
Example: P(o110) = (1,1,1,1)(0,1,1,0)T

2
—|Top|Bot|—|—|TOC

Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s Is the number of 1’s in s modulo 2.
Example: P(o110) = (1,1,1,1)(0,1,1,0)Y =2 mod 2 = 0

2
—|Top|Bot|—|—|TOC

Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s Is the number of 1’s in s modulo 2.
Example: P(1101) = (1,1,1,1)(1,1,0,1)%

2
—|Top|Bot| —|—|TOC

Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s Is the number of 1’s in s modulo 2.
Example: P(1101) = (1,1,1,1)(1,1,0,1)' =3 mod 2 =1

2
—|Top|Bot| —|—|TOC

Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s Is the number of 1’s in s modulo 2.
Example: P(1101) = (1,1,1,1)(1,1,0,1)1 =3 mod 2 =1
... computations with 0-1 entities are modulo 2.

2
—|Top|Bot|—|—|TOC

Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s Is the number of 1’s in s modulo 2.
Example: P(1101) = (1,1,1,1)(1,1,0,1)' =3 mod 2 =1
... computations with 0-1 entities are modulo 2.

e Parity of a substring.
Examples:
Po,1,0,1(0110) = (0,1,0,1)(0, 1, 1,0)"

2
—|Top|Bot|—|—|TOC

Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s Is the number of 1’s in s modulo 2.
Example: P(1101) = (1,1,1,1)(1,1,0,1)' =3 mod 2 =1
... computations with 0-1 entities are modulo 2.

e Parity of a substring.
Examples:
P(O,l,O,l)(OllO) — (0, 1, O, 1)(0, 1, 1, O)T =1lmod2=1

2
—|Top|Bot|—|—|TOC

Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s Is the number of 1’s in s modulo 2.
Example: P(1101) = (1,1,1,1)(1,1,0,1)' =3 mod 2 =1
... computations with 0-1 entities are modulo 2.

e Parity of a substring.
Examples:
P1,1,1,0)(0110) = (1,1,1,0)(0, 1, 1,0)*

2
—|Top|Bot|—|—|TOC

Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s Is the number of 1’s in s modulo 2.
Example: P(1101) = (1,1,1,1)(1,1,0,1)' =3 mod 2 =1
... computations with 0-1 entities are modulo 2.

e Parity of a substring.
Examples:
P(l,l,l,O)(OllO) — (1, 1, 1, O)(O, 1, 1, O)T =2mod2 =0

2
—|Top|Bot|—|—|TOC

Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s Is the number of 1’s in s modulo 2.

Example: P(1101) = (1,1,1,1)(1,1,0,1)' =3 mod 2 =1
... computations with 0-1 entities are modulo 2.

e Parity of a substring.
Examples:

Py(s)=p-s

2
—|Top|Bot| —|—|TOC

Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s is the number of 1’s in s modulo 2.

Example: P(1101) = (1,1,1,1)(1,1,0,1)' =3 mod 2 =1
... computations with 0-1 entities are modulo 2.

e Parity of a substring.
Examples:

Py(s)=p-s

e A parity oracle. S - S

How many “gueries” does it take to learn p?

2
—|Top|Bot| —|—|TOC

Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P(1101) = (1,1,1,1)(1,1,0,1)' =3 mod 2 =1
... computations with 0-1 entities are modulo 2.

e Parity of a substring.
Examples:

Py(s)=p-s

e A parity oracle. (a,b)T)"

(p1,p2)(a,b

How many “gueries” does it take to learn p?

2
—|Top|Bot|—|—|TOC

Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P(1101) = (1,1,1,1)(1,1,0,1)' =3 mod 2 =1
... computations with 0-1 entities are modulo 2.

e Parity of a substring.

Examples:
Pp(s)=p-s
o A parity oracle. (4 p) (p1,p2)(a,b)
(1,0)

T a.b T
T (plap2)(170)T — D1

How many “gueries” does it take to learn p?

2
—|Top|Bot|—|—|TOC

Parity Oracles

Bit strings may be identified with 0-1 vectors.
Example: o110 < (0,1,1,0)7

e The parity of bitstring s is the number of 1’s in s modulo 2.
Example: P(1101) = (1,1,1,1)(1,1,0,1)' =3 mod 2 =1
... computations with 0-1 entities are modulo 2.

e Parity of a substring.
Examples:

Pp(s)=p-s
* A parity oracle. (, p)T (p1,p2)(a,b)T
(1,0)F (p1,p2)(1,0)" = p
(0, 1)t (p1,p2)(0,1)" = py

How many “gueries” does it take to learn p?

2

Reversible Oracles

e Reversible oracles add the answer to a register.

X X

b+ O(x)

3
(—|BOt|—>|~>~>|TOC

Reversible Oracles

e Reversible oracles add the answer to a register.

X X

b b+ O(x)

o Simulation, using a standard oracle.

X

3
«—|Top|Bot|—|—|TOC

Reversible Oracles

e Reversible oracles add the answer to a register.

X X

b

b+ O(x)

o Simulation, using a standard oracle.

X

b b+ O(b)
e |s the simulation equivalent to a reversible oracle?

3
<—|T0p|—>|%>|TOC

Quantum Oracles

e A Quantum Oracle is the linear extension of a
classical reversible oracle.

Zx,b aiﬁ,b|x>l|b>o \

v

\

b D z,b Qap|T)b 4 O(2))

4
<—|BOt|—>|H>|TOC

Quantum Oracles

e A Quantum Oracle is the linear extension of a

classical reversible oracle.

()

2 b Q| T)[b)y 4 Dz Qb T) [0+ O(2)),

e Quantum oracles versus classical reversible oracles?

4
<—|Top|Bot|—>|H>|TOC

Quantum Oracles

e A Quantum Oracle is the linear extension of a

classical reversible oracle.
(

2 b Q| T) (bl 4 Dz Qb T) [0+ O(2)),

e Quantum oracles versus classical reversible oracles?

- Does it help to use a quantum computer to
analyze a classical reversible oracle?

4
«—|Top|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

5
<—|BO’[|—>|H>|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.

5
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks. Def - +) = 5(l0) + 1))
. - 1) = 5o — 1))
1. Parity and the Hadamard basis. V2
- Which logical states |ab), . have a minus sign in

[+l

5
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks. Def {|+> = %ﬂ o) + 1))
1. Parity and the Hadamard basis. =)= (lo) = 11))
- Which logical states |ab), . have a minus sign in

Sy T R i

5
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks. Def {|+> $(|0>+|1>)
1. Parity and the Hadamard basis. =)= (lo) = 11))
- Which logical states |ab), . have a minus sign in
R R TR RN E SRR N o

5
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks. Def - +) = 5(l0) + 1))
. - 1) = 5o — 1))
1. Parity and the Hadamard basis. V2
- Which logical states |ab), . have a minus sign in

N P RN e S e Nl TR N X

5
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks. Def - +) = 5(l0) + 1))
. - 1) = 5o — 1))
1. Parity and the Hadamard basis. V2
- Which logical states |ab), . have a minus sign in

N P RN e S e Nl TR N X

Ans.. States with odd parity w.r.t. the |—)-qubits.

5
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks. Def - +) = 5(l0) + 1))
. - 1) = 5o — 1))
1. Parity and the Hadamard basis. V2
- Which logical states |ab), . have a minus sign in

N P RN e S e Nl TR N X

Ans.. States with odd parity w.r.t. the |—)-qubits.

- Are these states distinguishable?

5
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
1. Parity and the Hadamard basis.

- {|+> = 25(lo) + 1))

L
=) = (o) — 1))

- Which logical states |ab), . have a minus sign in

AR T 0 N i PR RN RS Sl

>A|_>B?

Ans.. States with odd parity w.r.t. the |—)-qubits.

- Are these states distinguishable?

+>A_|E|_
+>B_|E|_

Product state convention:

N

O}

Multiply states associated with different qubit lines.

5
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks. Def - +) = 5(l0) + 1))
. - 1) = 5o — 1))
1. Parity and the Hadamard basis. V2
- Which logical states |ab), . have a minus sign in

N P RN e S e Nl TR N X

Ans.. States with odd parity w.r.t. the |—)-qubits.

- Are these states distinguishable?

+>A_|EI_ O>A
e H

5
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks. Def - +) = 5(l0) + 1))
. - 1) = 5o — 1))
1. Parity and the Hadamard basis. V2
- Which logical states |ab), . have a minus sign in

N P RN e S e Nl TR N X

Ans.. States with odd parity w.r.t. the |—)-qubits.

- Are these states distinguishable?

5
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks. Def.- +) = 5(l0) + 1))
. - 1) = 5lo) — 1))
1. Parity and the Hadamard basis. V2
- Which logical states |ab), . have a minus sign in

N T RN e P e A T e N X

Ans.. States with odd parity w.r.t. the |—)-qubits.

- Are these states distinguishable?

5

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

6
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

)

o+ O(x)),

6
<—|Top|Bot|—>|H>|TOC

The Quantum Parity Problem

Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

)

{|a>o f O(a)

0
notla), ifO(x) =1

6
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

Promise: O is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

)

{|a>o f O(a)

0
notla), ifO(x) =1

6
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

6
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

7310+ 1) e Py 7 [0}, + 1))

6
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

6
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

V3(10h — 1) e P 5[0} = 1)

6
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

|—>O+—|—>O

|—) Is an eigenstate of not with eigenvalue —1.

6
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

|—) is an eigenstate of not with eigenvalue —1.

6
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

|—) is an eigenstate of not with eigenvalue —1.

6
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

|—) Is an eigenstate of not with eigenvalue —1.

6
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution in two tricks.
2. Sign kickback for oracles with one-bit answers.

|—) Is an eigenstate of not with eigenvalue —1.

6
—|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution In two tricks.
1.&2. |(_)p1>A|(_)pz>B

7
—|Top|Bot|—|—|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution In two tricks.
1.&2. |(_)p1>A|(_)pz>B

|_>o

7
<—|Top|Bot|—>|H>|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution In two tricks.
1.&2. |(_)p1>A|(_)pz>B

|_>o

7
<—|Top|Bot|—>|H>|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution In two tricks.
1.&2. |(_)p1>A|(_)pz>B

7
<—|Top|Bot|—>|H>|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution In two tricks.
1.&2. |(_)p1>A|(_)pz>B

One gquery suffices for solving the n-qubit parity problem.

7
<—|Top|Bot|—>|H>|TOC

The Quantum Parity Problem

e Promise: O Is a quantum 2-qubit parity oracle.
Problem: Determine the parity vector with one query.

Solution In two tricks.
1.&2. |(_)p1>A|(_)pz>B

One gquery suffices for solving the n-qubit parity problem.

. . . hote use of “quantum parallelism”.

7
—|—|—|TOC

Summary of Gates Introduced So Far

Gate picture Symbol Matrix form
% pI‘ep(O)
meas(Z—b)

8
<—|BO’[|—>|H>|TOC

Summary of Gates Introduced So Far

Gate picture Symbol Matrix form

9— prep(o)
meas(Z—b)
not ((1) (1))

—p—
® sgn ((1) _01>

8
—|Top|Bot|—|—|TOC

Summary of Gates Introduced So Far

Gate picture Symbol Matrix form
% pI‘ep(O)

meas(Z—b)
—@— | e (0 %)
= | ha s004)

8
—|Top|Bot|—|—|TOC

Summary of Gates Introduced So Far

Gate picture Symbol Matrix form

9— prep(o)
meas(Z+—b)
—@— not ((1) (1))
® sgn (
—{H =

1
0
1 1
had % (1 _1)

A 1 0
| (AB) 0 1

B cnot 0 0
0 O

—|Top|Bot|—|—|TOC

Summary of Gates Introduced So Far

Gate picture Symbol Matrix form
% prep(O)
meas(Z+—b)
0 1
1 0
% Sgn (O _1>
(11
ey B had 5004
|00), 5 [01),5 [10) g [11),5
A o/ 1T 0 0 0
(AB) o), O 1 O 0
B ; cnot Wl 000 0 1
w\ 0 0 1 0

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:

9
<—|BO’[|—>|H>|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

9
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.

9
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

9
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

o Conjugating V by U gives U~ L. V.U.

9
<—|Top|Bot|—>|H>|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

o Conjugating V by U gives U~ L. V.U.

Applications: Network rearrangements.

9
<—|Top|Bot|—>|H>|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

o Conjugating V by U gives U~ L. V.U.

Applications: Network rearrangements.

e e o] e

9
<—|Top|Bot|—>|H>|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

o Conjugating V by U gives U~ L. V.U.

Applications: Network rearrangements.

%u“v U | —

9
<—|Top|Bot|—>|H>|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

o Conjugating V by U gives U~ L. V.U.

Applications: Network rearrangements.

%u“v U | —

Error effect determination.

E

9
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

o Conjugating V by U gives U~ L. V.U.

Applications: Network rearrangements.

%u“v U | —

Error effect determination.

e e Ll —

9
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

o Conjugating V by U gives U~ L. V.U.

Applications: Network rearrangements.

%u“v U | —

Error effect determination.

——{7}

9
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

o Conjugating V by U gives U~ L. V.U.

Applications: Network rearrangements.

%u“v U | —

Error effect determination.

—{# = —S—nF

9
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

o Conjugating V by U gives U~ L. V.U.

Applications: Network rearrangements.

%u“v U | —

Error effect determination.

e > 15

A\ . 4
-~

9
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

o Conjugating V by U gives U~ L. V.U.

Applications: Network rearrangements.

%u“v U | —

Error effect determination.

i ———

9

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.
U? = 1.
Conjugation properties. ..

sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

—O—O—D—

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

—O—O—D—

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

— D=

(o)l 5)-00)

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

P

—O—O—D—
o))60 ()

\ . 7
-~

Gy

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

— D= > =
—O———

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

— D= > =

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

— D= > =

P

—O—D——
o 2006) (5 9)

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

sgn and not conjugated by had.
had '.sgn.had = not, had *.not.had = sgn.

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

sgn and not conjugated by had.
had '.sgn.had = not, had *.not.had = sgn.

v ——x}

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

sgn and not conjugated by had.
had '.sgn.had = not, had *.not.had = sgn.

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

sgn and not conjugated by had.
had '.sgn.had = not, had *.not.had = sgn.

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

sgn and not conjugated by had.
had '.sgn.had = not, had *.not.had = sgn.

N
7\
—_ =
=
)—\
N~
N\
O =
I
[S—
N
S
7\
—_ =
=
)—\
N~

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

sgn and not conjugated by had.
had '.sgn.had = not, had *.not.had = sgn.

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

sgn and not conjugated by had.
had '.sgn.had = not, had *.not.had = sgn.

Lo} - ~®~
GG EC) G

J/

S

"~

(1 -1
v2\ 1 1

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

sgn and not conjugated by had.
had '.sgn.had = not, had *.not.had = sgn.

Lo} - ~®-

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

sgn and not conjugated by had.
had '.sgn.had = not, had *.not.had = sgn.

Lo} - ~®-
{—o—{7F

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

sgn and not conjugated by had.
had '.sgn.had = not, had *.not.had = sgn.

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

sgn and not conjugated by had.
had '.sgn.had = not, had *.not.had = sgn.

Lo} - ~®-

A0 YA (0

10

—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > ()
sgn and not: not!.sgn.not = —sgn, sgn~'.not.sgn = —not.

sgn and not conjugated by had.
had '.sgn.had = not, had *.not.had = sgn.

10
—|Top|Bot|—|—|TOC

Properties of Reversible Gates

Consider not, sgn, had and cnot. They satisfy:
Only real coefficients.

U? = 1.
Conjugation properties. .. —D— > —(X)—
sgn and not: not !.sgn.not = —sgn, sgn~'.not.sgn = —not.

sgn and not conjugated by had.
had ™ '.sgn.had = not, had '.not.had = sgn.

sgn and not conjugated by cnot.

—1
cnot™® not®.cnot™® = not(B>,
—1
cnot”™? .sgn(A).cnot(AB) = sgn(A),
—1
cnot™ not”.cnot"® = not(A>.not<B),

(B)

'.cnot?? = sgn<A) .Sgn

cnot™? .sgn(B

10
—|—|—|TOC

Preservation of Products of “Flips”

Products of not and sgn are preserved under conjugation
by operators composed of cnot’s and had’s.

U—l
1

o
b a4

11
<—|BOt|—>|H>|TOC

Preservation of Products of “Flips”

Products of not and sgn are preserved under conjugation
by operators composed of cnot’s and had’s.

U—l
1

o
b a4

- What is the power of this gate set?

11

Physically Allowed Reversible Operators

Define an operator U by linear extension of

12
<—|BO’[|—>|H>|TOC

Physically Allowed Reversible Operators

Define an operator U by linear extension of
Ulzy = >, tyz|y)
To be well-defined, U|z). must be a state:
Zy [uye|? = 1.

12
—|Top|Bot|—|—|TOC

Physically Allowed Reversible Operators

Define an operator U by linear extension of
To be well-defined, U|z). must be a state:

2 —
U’s linear extension must preserve states.

12
—|Top|Bot|—|—|TOC

Physically Allowed Reversible Operators

Define an operator U by linear extension of

To be well-defined, U|z). must be a state:

Zy |uy33|2 = 1
U’s linear extension must preserve states.
Consider U ~(|z) + e'?)z)) = y \}i(uyaj + e"Puy,)|y

12
—|Top|Bot|—|—|TOC

Physically Allowed Reversible Operators

Define an operator U by linear extension of

To be well-defined, U|z). must be a state:

Zy [uye|? =1
U’s linear extension must preserve states.
Consider U—(|z), + €'?z}) = 32, —5(uye + € Puyz:)ly).
1 =2, §|uyfc + e Puy, |’

12
—|Top|Bot|—|—|TOC

Physically Allowed Reversible Operators

Define an operator U by linear extension of

To be well-defined, U|z). must be a state:

Zy [uye|? =1
U’s linear extension must preserve states.
Consider U—(|z), + €'?z}) = 32, —5(uye + € Puyz:)ly).
1 =2, §|uyfc + e Puy, |

= Zy %(’uwa + uye|? + € Uyarys + €7 Uy, ty,)

12
—|Top|Bot|—|—|TOC

Physically Allowed Reversible Operators

Define an operator U by linear extension of
Ulzy = >, tyz|y)
To be well-defined, U|z). must be a state:
Zy [uye|? =1

U’s linear extension must preserve states.

Consider U ~(|z) + e'?)z)) = y \}i(uyaj + e"Puy,)|y

1 = Zy§|uy$—|—6 “uy? |
= Zy %(’uwa + e |? + € CUyarys + €7 Uy, ty,)
= 1+2) Re(eii, u,,)

12

—|Top|Bot|—|—|TOC

Physically Allowed Reversible Operators

Define an operator U by linear extension of
To be well-defined, U|z). must be a state:

Zy |uy33|2 = 1

U’s linear extension must preserve states.

Consider U ~(|z) + e'?)z)) = y \}i(uyaj + e"Puy,)|y

1 = Zy §|uyw+€ Pty |
= Zy %(’uwa + uy|? + e PUyeuy. + e Uy,)
= 1+2) Re(eii, u,,)
= 1+ 2Re(e* D 2y Uyatyz).

12

—|Top|Bot|—|—|TOC

Physically Allowed Reversible Operators

Define an operator U by linear extension of

To be well-defined, U|z). must be a state:

Zy [uye|? =1
U’s linear extension must preserve states.
Consider U—(|z), + €'?z}) = 32, —5(uye + € Puyz:)ly).
1 =2, §|uyfc + e Puy, |

— Zy %(’uwa + ’uyZ‘z + 6i¢aywuyz + e_wuywﬂyZ)
= 1+2) Re(eii, u,,)
= 1+ 2Re(e* D 2y Uyatyz).

Hence } _ tyzuy. = 0.

12
—|Top|Bot|—|—|TOC

Physically Allowed Reversible Operators

Define an operator U by linear extension of

To be well-defined, U|z). must be a state:

Zy |uy33|2 = 1
U’s linear extension must preserve states.
Consider U ~(|z) + e'?)z)) = y \}i(uyaj + e"Puy,)|y

Hence » _, uyxuyz = 0.

12
—|Top|Bot|—|—|TOC

Physically Allowed Reversible Operators

Define an operator U by linear extension of

To be well-defined, U|z). must be a state:

Zy |uy33|2 = 1
U’s linear extension must preserve states.
Consider U ~(|z) + e'?)z)) = y \}i(uyaj + e"Puy,)|y

Hence » _, uyxuyz = 0.

e U IS unitary.

12
—|Top|Bot|—|—|TOC

Physically Allowed Reversible Operators

Define an operator U by linear extension of
To be well-defined, U|z). must be a state:

Zy |uy33|2 = 1
U’s linear extension must preserve states.
Consider U ~(|z) + e'?)z)) = y \}i(uyaj + e"Puy,)|y

Hence » _, uyxuyz = 0.

e U is unitary. In matrix form with z € {1,2,..., N }:
Ut U 1
U11 U921 c.. UN1 U111 U192 U1N 1 0 ... O
’1_1,12 ’17,22 ﬂNQ U921 U929 . .. U2 N _ O 1 O
UIN U2N UNN UN1 UN?2 UNN 0 O 1

12
—|Top|Bot|—|—|TOC

Physically Allowed Reversible Operators

Define an operator U by linear extension of
To be well-defined, U|z). must be a state:

Zy |uy33|2 = 1
U’s linear extension must preserve states.
Consider U ~(|z) + e'?)z)) = y \}i(uyaj + e"Puy,)|y

Hence), uyxuyz = 0.

e U is unitary. In matrix form with z € {1,2,..., N }:
oAl U 1
U11 U921 c.. UN1 U111 U192 U1N 1 0 ... O
U1z U22 UN2 U21 U2 ... U2N _ 0 1 0
UIN U2N UNN UN1 UN?2 UNN 0 O 1
e Should every unitary operator be implementable?
12
«—|Top|—|—|TOC

Universality for Gate Sets

e Should every unitary operator be implementable?

13
<—|BO’[|—>|H>|TOC

Universality for Gate Sets

e Should every unitary operator be implementable?

e A set of gates Is universal if every unitary n-qubit operator
can be implemented with a network.

13
—|Top|Bot|—|—|TOC

Universality for Gate Sets

e Should every unitary operator be implementable?

e A set of gates Is universal if every unitary n-qubit operator
can be implemented with a network.

U

i

;

13
—|Top|Bot|—|—|TOC

Universality for Gate Sets

e Should every unitary operator be implementable?

e A set of gates Is universal if every unitary n-qubit operator
can be implemented with a network.

U

Other notions of universality:
Allow use of ancillas and measurements.

13
—|Top|Bot|—|—|TOC

Universality for Gate Sets

e Should every unitary operator be implementable?

e A set of gates Is universal if every unitary n-qubit operator
can be implemented with a network.

U

Other notions of universality:
Allow use of ancillas and measurements.
Allow approximation to within arbitrarily small error.

13
«—|Top|—|—|TOC

Locality Constraints on Gate Sets

e Can any n-qubit unitary operator be a gate?

14
<—|BO’[|—>|H>|TOC

Locality Constraints on Gate Sets

e Can any n-qubit unitary operator be a gate?

“Good” gates are physically realizable in one step.

14
—|Top|Bot|—|—|TOC

Locality Constraints on Gate Sets

e Can any n-qubit unitary operator be a gate?
“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.

14
—|Top|Bot|—|—|TOC

Locality Constraints on Gate Sets

e Can any n-qubit unitary operator be a gate?
“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.
The Toffoli gate: c2not™®® = if A&Bthen not".

A
B

C

14
—|Top|Bot|—|—|TOC

Locality Constraints on Gate Sets

e Can any n-qubit unitary operator be a gate?
“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.

The Toffoli gate: ¢2not™®” = if A&B then not'“.
A
1), 1),
1) B 1)
o) G 1)

14
—|Top|Bot|—|—|TOC

Locality Constraints on Gate Sets

e Can any n-qubit unitary operator be a gate?
“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.

The Toffoli gate: ¢2not™®” = if A&B then not'“.
A
1), 1),
1) B 1)
1) G 0).

14
—|Top|Bot|—|—|TOC

Locality Constraints on Gate Sets

e Can any n-qubit unitary operator be a gate?
“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.

The Toffoli gate: c2not™®® = if A&Bthen not".
(A)
jabe) o < E > lab(c+a- b))
\ C /

14
—|Top|Bot|—|—|TOC

Locality Constraints on Gate Sets

e Can any n-qubit unitary operator be a gate?
“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.

The Toffoli gate: c2not™®® = if A&Bthen not".
(A)
jabe) o < E > lab(c+a- b))
\ C /

Discreteness: Finite gate sets are preferred.

14
—|Top|Bot|—|—|TOC

Locality Constraints on Gate Sets

e Can any n-qubit unitary operator be a gate?
“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.

The Toffoli gate: c2not™®® = if A&Bthen not".
(A)
jabe) o < E > lab(c+a- b))
\ C /

Discreteness: Finite gate sets are preferred.

Fault tolerance: Elementary gates should be
experimentally verifiable and readily made stable.

14
—|Top|Bot|—|—|TOC

Locality Constraints on Gate Sets

e Can any n-qubit unitary operator be a gate?
“Good” gates are physically realizable in one step.

Locality: Elementary gates act on at most three qubits.

The Toffoli gate: c2not™®® = if A&Bthen not".
(A)
jabc) o < E > lab(c+a- b))
\ C /

Discreteness: Finite gate sets are preferred.

Fault tolerance: Elementary gates should be
experimentally verifiable and readily made stable.

... but do investigate other gate sets.

14

Contents

Title: IQI 04, Seminar 3........... it
Classical Oracles ... top. ..
Parity Oracles. ... top. ..
Reversible Oracles..........coiii i top. ..
QuantumoOracles ... top. ..
The Quantum Parity Problem I top. ..
The Quantum Parity Problem Il.............................
The Quantum Parity Problem Il
Summary of Gates Introduced SoFar................. top. ..

a b~ wN -

»

Properties of Reversible Gates |....................... top...9
Properties of Reversible Gates Il 10
Preservation of Products of “Flips” top...11
Physically Allowed Reversible Operators.............. top...12
Universality forGate Sets ..., top...13
Locality Constraintson Gate Sets.................... top...14
ReferenCeso 16
15

—|—|TOC

References

[1] E. Bernstein and U. Vazirani. Quantum complexity theory. SIAM J. Comput., 26:1411-1473, 1997.
[2] L. K. Grover. Quantum computers can search arbitrarily large databases by a single query. Phys. Rev. Lett., 79:4709-4712, 1997.
[3] D. A. Meyer. Sophisticated quantum search without entanglement. Phys. Rev. Lett., 85:2014-2017, 2000.

16
—|TOC

